Booster Beam Charge

BCHG local application
Mon, Nov 24, 2003

To assist Booster monitoring, it is desired to compute the energy lost due to the measured
loss of beam charge by analysis of the beam charge waveform. This note discusses the
method used in developing the local application BCHG for this purpose.

It was initially thought that this new feature could be supported by adding logic to the BLMS
local application, which processes the Booster Beam Loss Monitor waveforms, plus the beam
charge waveform. But it soon became clear that keeping the new logic separate would be
easier to organize and manage.

The idea is to compute a weighted sum of the beam charge lost each millisecond, where the
weights reflect the heavier cost of beam lost at higher energies. Peter Kasper developed a
table of weight values, in units of joules per 1012 protons, for each millisecond during the 33
ms Booster acceleration cycle. Multiplying by lost beam charge in units of 1012 protons, we
get units of joules. To get a kind of efficiency, we divide by the initial beam charge signal. The
formula for the result is the quotient of two sums:

energy = sum over i of the product (q[i] - g[i+l]) * w[i]
initCharge = q[0]

energySum = energySum + energy
gSum = gSum + initCharge

At the end of the update interval,

result = energySum/gSum

where q[i] is the beam charge waveform sampled value scaled to units of 1012 protons, w[i]
is the weight at that energy, and i ranges from 1 to 33 milliseconds. Note that q[i] decreases
as i increases, since beam charge can be lost during acceleration.

Insure that q[0] is sampled after beam injection. Also, insure that g[33] is sampled before
beam extraction, lest it be interpreted as a major beam loss. The weight values range from 64
to 1281 as the beam energy ranges from 400 Mev to 8 Gev.

Parameters used in this LA as installed in node06Cé6:

Prompt Value Meaning

ENABLE 00B2 Enable Bit# for LA

BCHG C 0206 Beam charge Chan#

INIT INX 0019 Initial index in zero-based 12.5 KHz waveform array
RESULT C 0350 Initial result Chan# for clock event 11, others to follow
PERIOD 001E Update period in seconds

Even for beam reset events, there are often times when no beam is present. There is an
internal parameter chgThresh, in units of 1012, for which an initial beam charge value less
than the threshold produces a zero result value. This avoids dividing by zero or even noise.

The sums are to be computed separately for each Booster reset clock event. To facilitate doing
this calculation, the following 32-byte context record is used, one for each clock event:

EvtRecType=
RECORD
iCharge: Integer;
fCharge: Integer;
nCyc: Integer;
nLow: Integer;

initial raw beam charge this cycle }

final raw beam charge this cycle }

number of cycles accumulated in sum }

number of cycles without beam above threshold }

energy: Real;
rChg: Real;

energy lost this cycle }
final charge this cycle included in sum }

gSum: Real;
energySum: Real;

sum of initial beam charge each cycle }
sum of energy lost each cycle }

P e P S U S S S Oy

date: DateType;
END;

date of last event }

In order to keep the record useful for diagnostic purposes, only the fields nCyc, nLow, gSum
and energySum are zeroed at the start of each update period. One can therefore view the last
initial and final beam charge raw values, plus the converted final charge as summed. The
time shows the time of the last occurrence of the given event. Times are in the usual BCD
format, making it easy to read in hexadecimal. The final byte is a binary value of half
milliseconds within the indicated cycle during which time the LA executed.

The weight values are precomputed and stored in a data file called DATABCHG, making it easy
to access when the LA is initialized.

Each 15 Hz cycle, when the present reset clock event has been determined, sample the
icharge value and compute the corresponding rChg value scaled in 1012 units. If rChgq is
below the threshold, increment nLow only; otherwise, increment nCyc, perform summation
over acceleration cycle of charge lost each millisecond times the weight factor, giving the
result energy. Accumulate the energy value into energysum. Also accumulate the initial
charge into gsum. Whether the threshold was reached or not, set the date field to the current
time-of-day. (The time associated with event 10, however, is the time of the last beam event
with beam charge above the threshold.)

At the end of the update period, build array of results for each reset event by dividing
energySum by gSum. (If nCyc is zero, set result to zero.) Then update these floating point
results into successive result channels. Use SetReads to target the reading fields in the ADATA
table, using the full scale to produce the 16-bit result. Then reset nLow, nCyc, gSum and
energySum to prepare for the next update period.

Just as for the case of the BLM support, the clock events in use are as follows:
11,12,13,14,15,16,17,19,1C, 1D, 10

Event 10 refers to any beam event, which is all of the previous events except 11 and 12. For

each beam event, a second context record is also managed using the same data. In this way,

any beam event gets a separate result as well as applying to this composite result.

Initially, the chgThresh parameter is set, rather arbitrarily, to 0.1 E12.

